650 research outputs found

    Inclusion of Diffraction Effects in the Gutzwiller Trace Formula

    Get PDF
    The Gutzwiller trace formula is extended to include diffraction effects. The new trace formula involves periodic rays which have non-geometrical segments as a result of diffraction on the surfaces and edges of the scatter.Comment: 4 pages, LaTeX, 1 ps figur

    Application of the diffraction trace formula to the three disk scattering system

    Get PDF
    The diffraction trace formula ({\em Phys. Rev. Lett.} {\bf 73}, 2304 (1994)) and spectral determinant are tested on the open three disk scattering system. The system contains a generic and exponentially growing number of diffraction periodic orbits. In spite of this it is shown that even the scattering resonances with large imaginary part can be reproduced semiclassicaly. The non-trivial interplay of the diffraction periodic orbits with the usual geometrical orbits produces the fine structure of the complicated spectrum of scattering resonances, which are beyond the resolution of the conventional periodic orbit theory.Comment: Latex article + 3 ps figure

    A Fredholm Determinant for Semi-classical Quantization

    Get PDF
    We investigate a new type of approximation to quantum determinants, the ``\qFd", and test numerically the conjecture that for Axiom A hyperbolic flows such determinants have a larger domain of analyticity and better convergence than the \qS s derived from the \Gt. The conjecture is supported by numerical investigations of the 3-disk repeller, a normal-form model of a flow, and a model 2-dd map.Comment: Revtex, Ask for figures from [email protected]

    Two novel approaches to the content analysis of school mathematics textbooks

    No full text
    The analysis of the content of school textbooks, particularly in a time of cross-cultural borrowing, is a growing field restricted by the tools currently available. In this paper, drawing on the analyses of three English year-one mathematics textbooks, we show how two approaches to the analysis of sequential data not only supplement conventional frequency analyses but highlight trends in the content of such textbooks hidden from frequency analyses alone. The first, moving averages, is conventionally used in science to eliminate noise and demonstrate trends in data. The second, Lorenz curves, is typically found in the social sciences to compare different forms of social phenomena. Both, as we show, extend the range of questions that can be meaningfully asked of textbooks. Finally, we speculate as to how both approaches can be used with other forms of ordered classroom data

    Small Disks and Semiclassical Resonances

    Full text link
    We study the effect on quantum spectra of the existence of small circular disks in a billiard system. In the limit where the disk radii vanish there is no effect, however this limit is approached very slowly so that even very small radii have comparatively large effects. We include diffractive orbits which scatter off the small disks in the periodic orbit expansion. This situation is formally similar to edge diffraction except that the disk radii introduce a length scale in the problem such that for wave lengths smaller than the order of the disk radius we recover the usual semi-classical approximation; however, for wave lengths larger than the order of the disk radius there is a qualitatively different behaviour. We test the theory by successfully estimating the positions of scattering resonances in geometries consisting of three and four small disks.Comment: Final published version - some changes in the discussion and the labels on one figure are correcte

    On the regional variability of dB/dt and its significance to GIC

    Get PDF
    Faraday's law of induction is responsible for setting up a geoelectric field due to the variations in the geomagnetic field caused by ionospheric currents. This drives geomagnetically induced currents (GICs) which flow in large ground‐based technological infrastructure such as high‐voltage power lines. The geoelectric field is often a localized phenomenon exhibiting significant variations over spatial scales of only hundreds of kilometers. This is due to the complex spatiotemporal behavior of electrical currents flowing in the ionosphere and/or large gradients in the ground conductivity due to highly structured local geological properties. Over some regions, and during large storms, both of these effects become significant. In this study, we quantify the regional variability of dB/dt using closely placed IMAGE stations in northern Fennoscandia. The dependency between regional variability, solar wind conditions, and geomagnetic indices are also investigated. Finally, we assess the significance of spatial geomagnetic variations to modeling GICs across a transmission line. Key results from this study are as follows: (1) Regional geomagnetic disturbances are important in modeling GIC during strong storms; (2) dB/dt can vary by several times up to a factor of three compared to the spatial average; (3) dB/dt and its regional variation is coupled to the energy deposited into the magnetosphere; and (4) regional variability can be more accurately captured and predicted from a local index as opposed to a global one. These results demonstrate the need for denser magnetometer networks at high latitudes where transmission lines extending hundreds of kilometers are present

    Classical, semiclassical, and quantum investigations of the 4-sphere scattering system

    Full text link
    A genuinely three-dimensional system, viz. the hyperbolic 4-sphere scattering system, is investigated with classical, semiclassical, and quantum mechanical methods at various center-to-center separations of the spheres. The efficiency and scaling properties of the computations are discussed by comparisons to the two-dimensional 3-disk system. While in systems with few degrees of freedom modern quantum calculations are, in general, numerically more efficient than semiclassical methods, this situation can be reversed with increasing dimension of the problem. For the 4-sphere system with large separations between the spheres, we demonstrate the superiority of semiclassical versus quantum calculations, i.e., semiclassical resonances can easily be obtained even in energy regions which are unattainable with the currently available quantum techniques. The 4-sphere system with touching spheres is a challenging problem for both quantum and semiclassical techniques. Here, semiclassical resonances are obtained via harmonic inversion of a cross-correlated periodic orbit signal.Comment: 12 pages, 5 figures, submitted to Phys. Rev.

    Spectral statistics in chaotic systems with a point interaction

    Full text link
    We consider quantum systems with a chaotic classical limit that are perturbed by a point-like scatterer. The spectral form factor K(tau) for these systems is evaluated semiclassically in terms of periodic and diffractive orbits. It is shown for order tau^2 and tau^3 that off-diagonal contributions to the form factor which involve diffractive orbits cancel exactly the diagonal contributions from diffractive orbits, implying that the perturbation by the scatterer does not change the spectral statistic. We further show that parametric spectral statistics for these systems are universal for small changes of the strength of the scatterer.Comment: LaTeX, 21 pages, 7 figures, small corrections, new references adde

    Geometrical theory of diffraction and spectral statistics

    Full text link
    We investigate the influence of diffraction on the statistics of energy levels in quantum systems with a chaotic classical limit. By applying the geometrical theory of diffraction we show that diffraction on singularities of the potential can lead to modifications in semiclassical approximations for spectral statistics that persist in the semiclassical limit ℏ→0\hbar \to 0. This result is obtained by deriving a classical sum rule for trajectories that connect two points in coordinate space.Comment: 14 pages, no figure, to appear in J. Phys.
    • 

    corecore